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Abstract

Phishing is a cybersecurity attack based on social engineering

that incurs significant financial losses and erodes societal trust.

While phishing detection techniques are emerging, attackers

continually strive to bypass state-of-the-arts. Recent phishing

campaigns have shown that emerging phishing attacks adopt

CAPTCHA-based cloaking techniques, marking a new round

of cat-and-mouse game. Our study shows that phishing web-

sites, hardened by CAPTCHA-cloaking, can compromise all

known state-of-the-art industrial and academic detectors with

almost zero cost.

In this work, we develop PhishDecloaker, an AI-powered

solution to soften the shield of the CAPTCHA-cloaking used

by phishing websites. PhishDecloaker is designed to mimic

human behaviors to solve the CAPTCHAs, allowing mod-

ern security-crawlers to see the uncloaked phishing content.

Technically, PhishDecloaker orchestrates five deep computer

vision models to detect the existence of CAPTCHAs, analyze

its type, and solve the challenge in an interactive manner. We

conduct extensive experiments to evaluate PhishDecloaker in

terms of its effectiveness, efficiency, and robustness against

potential adversaries. The results show that PhishDecloaker

(1) recovers the phishing detection rate of many state-of-the-

art phishing detectors from 0% to up to on average 74.25% on

diverse CAPTCHA-cloaked phishing websites (2) generalizes

to unseen CAPTCHA (with precision of 86% and recall of

69%), and (3) is robust against various adversaries such as

FGSM, JSMA, PGD, DeepFool, and DPatch, which allows

the existing phishing detectors to achieve new state-of-the-art

performance on CAPTCHA-cloaked phishing webpages. Our

field study over 30 days shows that PhishDecloaker can help

us uniquely discover 7.6% more phishing websites cloaked by

CAPTCHAs, raising alarm of the emergence of CAPTCHA-

cloaked features in the modern phishing campaigns.
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1 Introduction

Phishing attacks cause enormous financial losses and under-

mine societal trust. In recent years, the number of phishing

attacks has grown by over 150% per year [1]. To mitigate

these consequences, researchers have proposed various phish-

ing detection solutions [12,15,34–37,42] to report and explain

diverse zero-day phishing websites. While those solutions can

be effective against the phishing website, their effectiveness

is largely based on the assumption that a security crawler can

access the phishing content of the websites. Unfortunately, in

the new round of phishing campaigns, a growing body of evi-

dence [46, 64] has shown that the assumption is less likely to

hold true due to the emergence of CAPTCHA-based cloaking

techniques.

Cloaking is an evasion technique increasingly adopted by

phishing attackers to display different content to security

crawlers and human victims [64]. Attackers can deploy either

server-side or client-side cloaking for their phishing webpages.

Server-side cloaking checks human visits by analyzing HTTP

requests from the server end and deny visits from certain IP

addresses and User-Agents [32]. On the other hand, client-

side cloaking checks human visits by analyzing the runtime

browser behavior, including cookies, canvas fingerprints, and

WebGL capabilities [13, 64]. In recent years, researchers and

security engineers have proposed remedies such as simulating

a human-mimic HTTP header (to address server-side cloak-

ing) [32] and forcing the execution of JavaScript code used

in cloaking (to address client-side cloaking) [64]. However,

CAPTCHA-based cloaking, being a novel phishing-cloaking

technique, can easily nullify those anti-cloaking efforts.

CAPTCHA (Completely Automated Public Turing test to

tell Computers and Humans Apart) was initially developed

as challenge-response authentication to limit the abuse of

web crawling. CAPTCHA validates a human visit with the

interaction between the client and the server. On the client

side, the website prompts a CAPTCHA challenge, such as

picture selection and text recognition, to collect the challenge

response. On the server side, the challenge response is vali-



Listing 1: Embeded CAPTCHA Code in HTML File.

<html>

...

<!-- CAPTCHA library >

<script src="https://js.hcaptcha.com/1/api.js"

async defer></script>

...

<!-- embedded CAPTCHA div-tag>

<div id="cloaking">

<form id="form" method="post"

<div class="h-captcha" data -sitekey="..."

data -callback="submitForm" />

<input type="hidden" value="hcaptcha" name="

captchaType" />

</form>

</div>

...

</html>

dated against the ground-truth answer. By this means, neither

the HTTP-request modification nor the Javascript force exe-

cution technique can bypass this validation. CAPTCHA can

effectively serve as a cloaking technique in three aspects:

• False Sense of Legitimacy: CAPTCHAs are widely used

on legitimate websites, allowing a phishing website with a

prompted CAPTCHA challenge to often maintain its plau-

sibility without arousing suspicion.

• Low Deployment Cost: Any website can conveniently inte-

grate a CAPTCHA service by calling its API (see Listing 1).

Therefore, it is not difficult for phishing attackers to auto-

matically generate phishing kits equipped with CAPTCHA

cloaking. Additionally, there are many free CAPTCHA ser-

vices (e.g., reCAPTCHA v2) available, resulting in almost

zero cost to harden phishing websites with a CAPTCHA.

• Hard to Bypass: Due to CAPTCHA’s client-server archi-

tecture, it is non-trivial for modern security crawlers to

automatically bypass it.

Recent studies have shown that phishing attackers are

adopting CAPTCHA as a novel cloaking technique [14, 37,

41, 46, 59, 64]. The number of CAPTCHA-cloaked phish-

ing websites has increased almost tenfold from 55,447 on

January 2023 to 524,344 on June 2023. [10]. Furthermore,

our empirical study (see Section 2) shows that none of the

publicly available industrial phishing detection engines or

academic state-of-the-art models can detect a CAPTCHA-

cloaked phishing website.

In this work, we propose PhishDecloaker as the first step

to address the CAPTCHA-based cloaking problem. PhishDe-

cloaker is designed to simulate human behaviors in order to

solve the CAPTCHA in an interactive manner. Technically,

PhishDecloaker employs five types of deep computer vision

models across three stages: detection, recognition, and solv-

ing. Specifically, PhishDecloaker begins by detecting the pres-

ence of a CAPTCHA, formulating it as an object detection

problem [35,36,59] on a webpage screenshot. Then, PhishDe-

cloaker recognizes the type of CAPTCHA (by treating it as a

metric learning problem) so that it can schedule a follow-up

solving plan. This three-stage design allows us to flexibly

extend PhishDecloaker to solve new types of CAPTCHA

and maintain its performance even on out-of-distribution

CAPTCHAs. Our implementation of PhishDecloaker sup-

ports reCAPTCHA v2, hCaptcha, slider CAPTCHA, and ro-

tation CAPTCHA, covering 98.9% of the CAPTCHA market

share [2].

We conduct extensive experiments to evaluate PhishDe-

cloaker regarding its effectiveness, efficiency, and robustness

against potential adversaries. The results show that PhishDe-

cloaker (1) recovers the phishing detection rate of many state-

of-the-art phishing detectors from 0% to an average of 74.25%

on diverse CAPTCHA-cloaked phishing websites and (2)

generalizes to unseen CAPTCHA (with average precision

and recall of 86% and 69%), and (3) is robust against adver-

sarial attacks such as FGSM, JSMA, PGD, DeepFool, and

DPatch. Furthermore, our field study over 30 days on the

emerging real-world websites with different decloaking tech-

niques show that PhishDecloaker allows us to detect 7.6%

more phishing websites cloaked by CAPTCHAs (66 out of

869 phishing websites).

In summary, this work makes the following contributions:

• We develop PhishDecloaker, a hybrid deep-vision system

to detect, recognize, and solve diverse CAPTCHAs. This

system supports mainstream CAPTCHAs and is designed

to be extensible for new types of CAPTCHAs. To the best of

our knowledge, our work is the first to address CAPTCHA-

cloaking for phishing detection.

• We deliver Cloaken, a CAPTCHA-based hardening frame-

work, which allows us to automatically cloak a phishing kit

with CAPTCHAs and deploy it through randomly gener-

ated URLs. We implement this cloaking technique on top

of the DynaPD dataset1 [37].

• We deliver PhishDecloaker as a tool integrated with existing

SOTA phishing detectors Phishpedia [35] and PhishInten-

tion [36], enhancing their capabilities to detect zero-day

phishing websites.

• We conduct extensive experiments to evaluate PhishDe-

cloaker. Our results show that PhishDecloaker effectively

decloaks phishing websites found in the wild. Further-

more, PhishDecloaker is robust against out-of-distribution

CAPTCHAs and adversarial attacks.

Given the space limit, more details of PhishDecloaker are

available at [9].

1The DynaPD dataset provides more than 6,000 phishing kits for security

researchers to interact with.



2 An Empirical Study of Anti-Phishing Enti-

ties against CAPTCHA-Cloaking

In this section, we conduct an empirical study to answer the

question: what is the performance of the state-of-the-art anti-

phishing solutions in detecting CAPTCHA-cloaked phishing?.

To answer the question, we design a phishing hardening

framework, Cloaken, to automatically cloak phishing kits

with CAPTCHAs. Technically, Cloaken functions as a re-

verse proxy that blocks visitors with a CAPTCHA page from

a selection of templates (e.g., hCaptcha, reCAPTCHA v2).

Once the visitor solves the CAPTCHA, Cloaken verifies the

submitted challenge and reveals the phishing content.

Phishing Detection Service. We select 2 popular URL black-

lists: Google Safe Browsing (GSB) and Microsoft Defender

SmartScreen for evaluation. GSB is used by Chrome, Firefox,

and Safari web browsers, accounting for 81.36% of desk-

top and 90.17% mobile users worldwide. On the other hand,

SmartScreen protects Edge and accounts for 12.75% of desk-

top users. We also include VirusTotal (VT) [52], the world’s

largest threat corpus with 92 integrated phishing detectors.

URL Configuration. We prepare 5 cloaking types of phish-

ing websites (tp): no cloaking (baseline) and 4 CAPTCHA-

cloaked types (i.e., reCAPTCHA v2, hCAPTCHA, GeeTest

Slide, and Rotation). They are choosen based on their market

share [54]. We call a pair of detection service and cloaking

type, (d, tp), as a configuration. For each cloaking type tp,

we generate k random unique URLs and submit it to d for

analysis. In this study, we let k be 100. Therefore, there are

500 URLs submitted to 3 different detection service.

URL Submission. To report each of our phishing URLs, we

submit them to GSB via its online submission portal and

to VirusTotal via its API. Since SmartScreen receives data

from other anti-phishing entities, including Microsoft’s own

internal cybersecurity ecosystem, we mass-submit emails with

the phishing URLs to an Outlook account with Microsoft

Defender Safe Link activated.

URL Monitoring. We monitor every day if any of the URLs

corresponding to a configuration (e.g., d-tp pair) are reported

as phishing. If it is, it means that a service d can penetrate a

cloaking type tp. We monitor GSB through its Lookup API

and VT by requesting a new URL scan and reviewing the

resulting analysis report. We monitor SmartScreen by loading

the URLs onto a non-headless Edge browser using Playwright

and check if SmartScreen’s block page shows up.

Results. Table 1 shows our results. All baseline sites are

blacklisted within 24 hours, whereas all CAPTCHA-cloaked

sites remain undetected for 7 days and counting, which is

more than sufficient for a successful phishing campaign [47,

49]2. Overall, none of the selected phishing detectors can

reveal CAPTCHA-cloaked phishing, further motivating us to

2 We reported our findings to VT, GSB, and SmartScreen. GSB (Google)

and SmartScreen (Microsoft) have acknowledged our report and are investi-

gating the potential solution.

design PhishDecloaker. We will discuss the ethical concerns

on this experiment in in Section 6.

3 Threat Model

Assume that there is a set of phishing detectors D =
{d1,d2, ...,dn}, where each detector di (i = 1,2, ...,n) needs

to access the content of a webpage w ∈ W for phishing

analysis. Each detector di can be modelled as a function

di(.) : W →{0,1} where W is the set of webpages. Specifi-

cally, a detector di(.) maps a webpage w ∈W to a boolean

value where w = 0 or 1 indicates that w is benign or phishing.

An attacker can equip their phishing website wp with a

CAPTCHA instance c ∈ C where C is the set of CAPTCHA

instances under pre-defined CAPTCHA types (e.g., re-

CAPTCHA, hCaptcha, and GeeTest). Equipped with a human-

authentication challenge c, the attacker can render a new web-

page w′p← c⊕wp so that ∀di ∈D,di(w
′
p) = 0, where⊕ is an

operation to render the CAPTCHA on top of the webpage wp.

The prepared CAPTCHA sets share the following features:

• Diverse Types of CAPTCHAs. The attacker can adopt

diverse types of CAPTCHAs, including commercial ver-

sions (e.g., reCAPTCHA and hCaptcha) and open-source

versions. Additionally, we assume that the attacker can

customize their own implementation of well-known

CAPTCHA challenges, for example, with a similar appear-

ance to reCAPTCHA and hCaptcha.

• Code Obfuscation. The CAPTCHA can have its partial

execution on the client side, for example implemented by

JavaScript code. We assume that the attacker can adopt code

obfuscation techniques [11, 58] to modify the underlying

code or structure of CAPTCHAs while preserving the same

appearance and functionality inside a browser.

• Adversarial Images. An attacker may introduce noise and

distortion into CAPTCHA images [30, 50, 56]. This can

make it difficult for deep learning models to extract the

relevant features and classify the CAPTCHA accurately,

as the modified CAPTCHA may no longer conform to the

expected patterns or features used for classification.

Given the above threat model, we adopt a vision-based

solution to detect and classify CAPTCHAs. In other words,

our solution (1) does not rely on frontend code analysis and

(2) must be robust against out-of-distribution CAPTCHAs

and adversarial attacks such as noise and distortion.

4 Approach

Overview. Figure 1 provides an overview of PhishDecloaker.

Given a suspicious webpage wp with cloaking potential, in-

stead of feeding wp into a phishing detector, PhishDecloaker

tries to remove its “cloak” by looking at and interacting with



Table 1: Empirical results on performance of SOTA industrial phishing detectors in revealing CAPTCHA-cloaked phishing sites.

Category Phishing Detection Service URLs Blacklisted / URLs Submitted

Baseline reCAPTCHA v2 hCaptcha GeeTest Slide Rotation

API-based VirusTotal (incl. 92 phishing detectors) 100 / 100 0 / 100 0 / 100 0 / 100 0 / 100

Browser-based Google Safe Browsing 100 / 100 0 / 100 0 / 100 0 / 100 0 / 100

Browser-based Microsoft Defender SmartScreen 100 / 100 0 / 100 0 / 100 0 / 100 0 / 100

CAPTCHA
Detection

A Suspicious Webpage

CAPTCHA
Recognition

CAPTCHA
Templates

CAPTCHA Region

CAPTCHA
Solver

RepositoryCAPTCHA Solver

Phishing Content

CAPTCHA
Query

PhishDecloakerPhishing Detector

Figure 1: System Design of PhishDecloaker. PhishDecloaker is designed to remove the “cloak” of a CAPTCHA-cloaked phishing

webpage, by detecting, recognizing, and solving the CAPTCHA challenges.

wp. Technically, PhishDecloaker operates on the screenshot

of wp to bypass potential code obfuscation, which involves

three steps:

Step 1. CAPTCHA Detection (Section 4.1). We identify the

CAPTCHA instance on the webpage by formulating it as an

object detection problem in computer vision. We denote the

detected CAPTCHA as c.

Step 2. CAPTCHA Recognition (Section 4.2). With our

prepared database of CAPTCHA templates, we determine

the type of the CAPTCHA c, tc, by matching the CAPTCHA

instance c with its best fit in the template database through a

learned OCR-aided Metric Learning network. The solution

is designed in a similar way as a face recognition problem

in computer vision. By this means, PhishDecloaker provides

an extensible CAPTCHA recognition framework to flexibly

including new CAPTCHA types.

Step 3. CAPTCHA Solving (Section 4.3). PhishDecloaker

is further equipped with an arsenal of CAPTCHA solvers.

Given the CAPTCHA type tc, we formulate it as a query to

find the most appropriate CAPTCHA solver. The found solver

interacts with the webpage wp to solve the challenge. This

interaction can be repeated multiple times to increase the suc-

cess rate of anti-phishing crawlers. PhishDecloaker provides

such an extensible design to integrate new CAPTCHA solvers

in the CAPTCHA solver repository.

FPN features
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Webpage Screenshot Region Proposal 
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Align
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Figure 2: Model architecture of CAPTCHA detection model,

consisting of multi-stage processes

4.1 CAPTCHA Detection

Given a webpage screenshot, denoted as S , as input, the

CAPTCHA detection model generates object proposals

C (S) = {t|t = ⟨x,y,w,h⟩}. As showed in Figure 2, these pro-

posals (in red dashed rectangle) consist of bounding boxes

that contains the CAPTCHA region.

Figure 2 illustrates our model design. We employ an

Object Localization Network (OLN) [33], which is a two-



stage network comprising a Region Proposal Network (RPN)

stage and a Region of Interest (RoI) stage. Given a web-

page screenshot, the backbone network (Feature Pyramid

Network) transforms the webpage into a feature pyramid

F = { f | f = k× k, f ∈ R2} where k = W
4
, W

8
, W

16
.... Each ele-

ment in F is a feature map in the form of a k× k matrix, and

W is the maximum of webpage width and webpage height.

Each feature map captures the spatial features of the webpage

screenshot in different granularity. Then, the feature pyramid

is fed into the Region Proposal Network, generating initial lo-

cation proposals for the foreground object (i.e., CAPTCHA).

These proposals undergo further refinement in the Region of

Interest (RoI) network to yield the final bounding boxes.

Different from a conventional object detection model [53]

where objects are both detected and classified, we customize

our CAPTCHA detector to have only detection functional-

ity. Technically, instead of a training objective covering (1)

object location on x,y,w, and h and (2) object classification,

we train our CAPTCHA detector with a sole focus on ob-

ject location. The customization allows our model training

process to focus on a single optimization objective. This is

useful considering that the CAPTCHA containers can be very

diverse, which can include (1) task instructions for solving

the CAPTCHA, (2) the challenge body with visual elements,

and (3) user interaction buttons for controlling and engaging

with the CAPTCHA. They can take various forms and styles,

which may encompass distorted text, images, specific object

clicks, or even behavioral cues such as slider dragging.

4.2 CAPTCHA Recognition

The CAPTCHA recognition model is designed to map a

test CAPTCHA instance c to its best fit in a set of prepared

CAPTCHA templates Ct where each element in Ct is a rep-

resentative CAPTCHA instance of a CAPTCHA type. Our

CAPTCHA recognition model consists of a feature extractor

mapping an object proposal (i.e., a CAPTCHA instance) to a

feature vector, i.e. fθ(.) : C → R
n. We denote the type func-

tion type : C → T which returns the type of a CAPTCHA

instance, where T is the set of CAPTCHA types in Ct . Then,

we can select the best fit c∗ of a test CAPTCHA instance c by

c∗ = argmax
ct∈Ct

cos( fθ(c), fθ(ct))

Given a threshold th, we can decide the type of c by type(c∗)
if cos( fθ(c), fθ(c

∗))> th. To learn fθ, we address the follow-

ing challenges:

• Multi-modal representation learning: A CAPTCHA chal-

lenge contains multi-modal information, including the chal-

lenge description in both plain text and images.

• Intra-type diversity: Challenges within the same

CAPTCHA type can differ significantly due to various ser-

vice vendors or updates to the CAPTCHA pool.

Feature 

Extractor f(.)
cosine_dist(x, x')

A CAPTCHA Template

xcaptchaxvisual

xtextual

xcaptchaxvisual

xtextual

x'captchax'visual

x'textual

x'captchax'visual

x'textual

shared weights
Testing CAPTCHA

CAPTCHA Template Repository

...

Figure 3: OCR-aided Metric Learning Model. The

CAPTCHA recognition system comprises a feature extractor

f (.) and a recognition head. The extractor maps a CAPTCHA

image to a low-dimensional embedding xcaptcha. The recog-

nition head matches the testing CAPTCHA with CAPTCHA

templates using cosine distance.

• Inter-type generalization: As CAPTCHA technology

evolves, new types emerge. The model must be easily adapt-

able to new types of CAPTCHAs.

To incorporate both textual and visual features into the

representation, we introduce a dual-branch architecture for

our feature extractor fθ(.) (See Figure 3). The architecture

consists of: (1) a text encoder, pre-trained on an Optical Char-

acter Recognition (OCR) task, and (2) an image encoder,

pre-trained on an image classification task. Both encoders

takes the CAPTCHA image as input, and produces the re-

spective embeddings xvisual and xtextual . These two branches

capture distinct yet complementary information. The OCR-

based encoder focuses on character-indicative features es-

sential for understanding task instructions. In contrast, the

image encoder identifies salient visual patterns, capturing the

CAPTCHA’s layout and design. A fully-connected projec-

tion layer is added to fuse the two modalities with additional

non-linearity: xcaptcha = σ(W T [xvisual⊕xtextual ]+b).
With the feature extractor, we design the recognition head.

A straightforward approach involves adding a Softmax acti-

vation and using conventional Cross-entropy Loss for model

fitting. However, this approach tends to overfit to observed

samples, especially when the training set is small, leading

to inaccurate predictions for new variants within known cat-

egories. Additionally, this approach lacks the flexibility to



(a) reCAPTCHA v2 (b) hCaptcha (Variant 1) (c) hCaptcha (Variant 2) (d) GeeTest Slider (e) Baidu Rotation

Figure 4: Examples of CAPTCHA challenges of different types.

accommodate new CAPTCHA types during runtime, as the

number of classes must be predefined before inference.

In this work, we employ a deep metric learning solution

to address the challenges outlined earlier. The model aims to

learn an embedding space that accurately captures semantic

similarities between images. It is trained on pairs of samples,

denoted as “positive pair” if they belong to the same class and

“negative pairs” if they come from different classes. A loss

function ensures that positive pairs are closer in the embed-

ding space than negative pairs. Specifically for CAPTCHAs,

our goal is to cluster those of the same type together. During

inference, we input the test CAPTCHA along with a set of

CAPTCHA templates from different classes of CAPTCHAs.

We then rank the distances to identify the closest class as the

final prediction.

In this manner, we effectively tackle the aforementioned

challenges: For the intra-type diversity issue, the pairwise

training paradigm enables the model to be more sensitive in

distinguishing “variations within the class” from “variations

relative to other classes”. Given an unseen sample from a

known class, the model is more inclined to treat it as a variant

of a known class rather than a novel class of CAPTCHA.

For the inter-type generalization issue, accommodating new

CAPTCHA types is straightforward: new CAPTCHAs can

be easily added to the template database, serving as reference

points for future queries.

Technically, during training, we freeze the textual branch

and fine-tune all other remaining modules using Sub-center

ArcFace loss [21]:

L =−
1

N

N

∑
i=1

log

(

es·(cos(θyi
+m)−1)

es·(cos(θyi
+m)−1)+∑

C
j=1, j ̸=yi

es·cos(θ j)

)

(1)

In Equation 4.2, we learn a set of parameters representing

the embedding centers for each class. The embedding feature

i and the center for its ground truth class yi are considered

a “positive pair”, while i and the center for another class j

form a “negative pair”. θyi
is the angle between the positive

pair, and θ j is the angle between the negative pair. This loss

function encourages CAPTCHA embeddings to be close to

their respective class centers and distant from irrelevant ones.

Additionally, to address class imbalance, as some CAPTCHA

types are more common than others, we assign class weights

to the loss, calculated as 1
log(nc)

, where nc is each class’s fre-

quency in the training set.

4.3 CAPTCHA Solvers

The types of challenges presented by CAPTCHAs are diverse,

as shown in Figure 4. Each type may require a unique skill

set, such as object recognition, visual question answering,

pattern matching, or orientation identification. To address the

problem, we develop an arsenal of CAPTCHA solvers for

each supported CAPTCHA type. For some CAPTCHA types

(e.g., reCAPTCHA), we adopt the state-of-the-art solvers;

while for other important CAPTCHA types (e.g., rotation)

where no solver is available, we develop our own AI-powered

solving solutions. We do not claim contribution in solving a

particular CAPTCHA type as our system is extensible to new

CAPTCHA solvers. We support four types of CAPTCHA

solvers as follows.

reCAPTCHA v2 Solver. Google reCAPTCHA v2 is the most

prevalent type of CAPTCHA among the Top 1 Million Sites

[2]. We solve the reCAPTCHA v2 challenges by employing

an object detection model similar to that of Hossen et al. [31].

hCaptcha Solver. hCaptcha is an image-based CAPTCHA

service similar to reCAPTCHA. However, hCaptcha presents

users with more realistic and even AI-generated images. We

address two common variants of hCaptcha:

• Variant 1 (Binary Selection). Object-Identifying hCaptcha

is similar to reCAPTCHA v2 (See Figure 4b). But it offers

more complex challenge descriptions, enriched with extra

context on styles or relations to other objects (e.g., some-

one playing football). Hence, we approach the problem as

an open-set visual question answering (VQA) model. In

a typical VQA task, a model is presented with an image

alongside a text-based question about the visual content.

The model then generates an answer, which can be a simple

“yes” or “no” or a more complex textual answer. Given a

CAPTCHA challenge specifying the object description as

x, we transform it into a question “Is this a/an x?” for each

candidate grid, then output an answer of either “yes” or



“no”. As a result, the solver selects all the grids with “yes”.

• Variant 2 (Area Selection). This is an emerging variant

(See Figure 4c) that asks the user to point out a specific

location within an image. To solve these more advanced

challenges, we employ the off-the-shelf tool hCaptcha Chal-

lenger [6].

For reCAPTCHA v2 and hCaptcha, if the deep-learning-

based solver fails, we defer the challenge to a visual language

model (VLM) agent and ask for a controlled response (e.g.,

click on squares 1, 5, 7 or coordinates (x, y)).

Slider CAPTCHA Solver. Slider-based CAPTCHAs require

users to slide a puzzle piece into an empty spot on a back-

ground image [54, 67]. In addition to the accuracy of the

placement, the CAPTCHAs also analyze the sliding trajec-

tory to detect automated behavior. For example, human users

are unlikely to maintain a constant speed throughout the slide.

We design our slider solver with traditional computer vision

techniques. First, we identify the the background image and

puzzle piece elements from the webpage source code. We

then apply pre-processing techniques like Gaussian blurring

for denoising and grayscale conversion followed by Sobel

edge detection for edge sharpening. Next, we use the puzzle

piece as a template for template matching, locating a similar

region within the background image. Finally, the solver uses

easing functions to simulate a human-like dragging trajectory.

Rotation CAPTCHA Solver. Rotation CAPTCHAs require

users to adjust randomly rotated images to their upright ori-

entation [29]. These challenge images usually feature natural

and man-made landscapes.

In this work, we treat the image rotation problem as a

regression task to predict the current degree of rotation for

the challenge image. Once the rotation angle is determined,

the solver can interact with the CAPTCHA to correct the

orientation. To construct our model, we adopt EfficientNet

[60], pretrained on ImageNet. We further fine-tune the model

using randomly rotated samples from the Landscape Dataset

[7], a community-contributed collection of 7,268 images that

depict natural and man-made landscapes. Cosine distance to

the ground-truth angle serves as the training loss.

4.4 Adversarial Countermeasure

Since PhishDecloaker orchestrates several deep-learning mod-

els, it may be vulnerable to adversarial attacks at runtime.

We identify two plausible attack scenarios, i.e., system-level

attack and model-dependant attack. A system-level attack in-

troduces blurring, noise, or other obfuscations to CAPTCHA

challenges, hindering the models’ ability to identify content.

This commonly occurs when CAPTCHAs detect suspicious

activities from an IP address and present more challenging

images. This attack is model-agnostic and does not target

any specific model. A model-dependent attack exploits ex-

isting gradient-based methods [28, 38, 40, 44, 51] to deliber-

ately perturb inputs and induce incorrect predictions. Both

our CAPTCHA detector and recognition models could be

susceptible to this type of attack.

To counter the former, we use adversarial training for all

our deep-learning models. This approach aims to enhance

model robustness by introducing adversarial examples during

training. These examples are created by applying random

augmentations to the original input data, potentially leading

the model to make incorrect predictions. In our work, we con-

sider the following types of augmentations such as Random

Mask, Gaussian Noise, and Gaussian Blur. We mix adversar-

ial and clean samples at a ratio of 6:4. To counter the latter, we

implement PhishDecloaker with the gradient masking tech-

nique as proposed in [35]. Specifically, we replace the ReLU

activation function with a step ReLU function defined as

f (x) = max(0,α · ⌈ x
α
⌉), where α is the discretization parame-

ter. This renders the activations non-differentiable, effectively

zeroing out the gradients.

5 Experiments

We evaluate PhishDecloaker with the following questions:

• RQ1 (Effectiveness): What is the performance of PhishDe-

cloaker in revealing CAPTCHA-cloaked phishing kits?

• RQ2 (CAPTCHA Detection & Recognition): What are

the performances of PhishDecloaker’s CAPTCHA detec-

tion and recognition components?

• RQ3 (CAPTCHA Solving): What is the performance of

PhishDecloaker’s CAPTCHA solvers?

• RQ4 (Ablation Study): What are the alternatives for

PhishDecloaker’s design, and how do they perform?

• RQ5 (Adversarial Attacks): Is PhishDecloaker robust

against adversarial attacks on its deep learning models?

• RQ6 (Field Study): Can PhishDecloaker help discover

more zero-day phishing websites in the wild?

To address each question, we first introduce the experimen-

tal settings (e.g., model training), followed by the objective

metrics used to evaluate each research question. More experi-

ment details are available at [9].

5.1 RQ1: Experimental Effectiveness

5.1.1 Experiment Setup

Phishing Detectors. We select Phishpedia [35] and PhishIn-

tention [36] for their state-of-the-art performance on detecting

zero-day phishing websites. Following the instructions of both

detectors, we use a reference list of 277 phishing targets (i.e.,

Facebook, Bank of America, etc).



Table 2: Phishing detection rate on DynaPD. The percentages are calculated as changes relative to the baseline (No Cloaking).

The average runtime overhead is computed for each module (CAPTCHA detection, CAPTCHA recognition and CAPTCHA

solver) and concatenated by “+”.

Group No Cloaking After Cloaking

reCAPTCHA v2 hCaptcha GeeTest Slide Rotation

Phishpedia 0.73 0.00 (↓100%) 0.00 (↓100%) 0.00 (↓100%) 0.00 (↓100%)

PhishIntention 0.53 0.00 (↓100%) 0.00 (↓100%) 0.00 (↓100%) 0.00 (↓100%)

Phishpedia + PhishDecloaker 0.73 0.57 (↓22.2%) 0.29 (↓59.8%) 0.69 (↓5.1%) 0.61 (↓16.1%)

PhishIntention + PhishDecloaker 0.53 0.41 (↓22.3%) 0.21 (↓59.8%) 0.50 (↓5.1%) 0.45 (↓16.0%)

Runtime Overhead (s) - 0.13 + 0.05 + 44.17 0.12 + 0.05 + 8.81 0.13 + 0.06 + 5.12 0.13 + 0.08 + 5.01

Phishing Dataset. We apply our hardening framework,

Cloaken, to the DynaPD dataset [37]. The DynaPD dataset

comprises approximately 6k deployable and interactable

phishing kits, providing a replicable environment to study

CAPTCHA cloaking on phishing kits. Due to limitations in

the reference lists of phishing detectors [35, 36], we filter out

phishing kits targeting sites not included in the reference list.

This filtering results in a dataset of 2,960 phishing kits for our

study. Cloaken cloaks each phishing kit with 4 CAPTCHA in-

stances under the category of reCAPTCHA, hCaptcha, slider,

and rotation, none of these CAPTCHA instances are used for

training the models.

Measurement. We evaluate whether PhishDecloaker can help

the phishing detectors to recover its access to the phishing

content. Specifically, we evaluate detection rate of a phishing

detector on DynaPD, r1, its detection rate on the different

types of cloaked phishing website variants, r2, and its detec-

tion rate after equipped with PhishDecloaker, r3. Note that,

PhishDecloaker is not designed for improving the precision

of existing phishing detectors, thus we only evaluate the recall

measurement in the study.

Environment. We use Chrome version 114 and ensure a

clean browser state for each session, i.e., with no caches or

cookies preserved between consecutive requests. To conceal

any indications of a headless browser and automation, we

modify the requests and web browser characteristics, such as

customizing User-Agent headers and adjusting to the Naviga-

tor object properties, as well as modifying to WebGL vendor.

All solvers operate from a single IP address and machine with

20 CPU cores, 125G memory, and A100 GPU.

5.1.2 Results

Table 2 shows the overall experiment results. On the 2.9k

phishing websites without any cloaking, Phishpedia and Phish-

Intention achieve detection rates of 72.6% and 53.0% respec-

tively. Any CAPTCHA-cloaked variants can compromise

their effectiveness, dropping the detection rate to 0%. In con-

trast, PhishDecloaker can recover their detection rates back

to a percentage of their original performance: 78% on re-

CAPTCHA, 40% on hCaptcha, 95% on slider CAPTCHA,

and 84% on rotation CAPTCHA. Overall, PhishDecloaker’s

contribution comes with acceptable runtime cost. Note that

the main overhead lies in CAPTCHA solving. Specifically,

solving a reCAPTCHA instance takes an average of 44.17s.

This is because reCAPTCHA can iteratively replace selected

images with new ones and prompt the user to click “verify”

once there are no target objects (e.g., motorcycle) left. This

iterative interaction incurs a significant runtime overhead.

5.1.3 Qualitative Analysis

Next, we further investigate and categorize the CAPTCHAs

which PhishDecloaker cannot address. The reason lies in as

follows.

Incapability of the off-the-shelf solvers. We observe that

the off-the-shelf solvers (e.g., hCaptcha solver) can have their

limitations. Figure 5a shows an example where PhishDe-

cloaker successfully detect and recognize the hCaptcha type

but the hCaptcha solver fails to solve the challenge of click

each image containing a diamond bracelet. Our investiga-

tion shows that the model mistakenly recognize earrings as

bracelet, which are of similar visual semantics. A potential

remedy is to retrain the model to further distinguish the em-

bedding space of the model. We will discuss on how to im-

prove the capability in Section 6.

Human verification beyond CAPTCHA. We discover that

some CAPTCHAs such as reCAPTCHA v2 verifies a hu-

man using more than an interactive challenge. It may include

mouse behavior analysis and browser fingerprinting, which

will block our visits despite solving the challenge. We ac-

knowledge the significance of these methods. Since there are

relevant works [31, 64] on this direction (see Appendix A.3),

we limit our focus on countering CAPTCHA cloaking, which

complements these works. A hybrid security crawler with

various decloaking techniques is vital for effectiveness.

The restriction of training dataset. Finally, we find that our

customized solvers might be limited by our training dataset. In

general, our regression model (see Section 4.3) learns upright

orientation for different pictures. If a picture to be rotated is

deviated from the training dataset, the model might fail to

predict its rotation degree effectively. For example, Figure 5b



(a) an instance of hCaptcha

(V1) which cannot be

solved by PhishDecloaker.

(b) a solved rotation

CAPTCHA instance.

(c) an unsolved rotation

CAPTCHA instance.

Figure 5: Example cases in solving CAPTCHAs

and Figure 5c manifest different genres of images, which

leads to performance disparity. Although we do not claim

contribution on solving any particular CAPTCHA instance,

we will discuss potentially better solutions in Section 6.

5.2 RQ2: CAPTCHA Detection & Recognition

5.2.1 CAPTCHA Detection

Dataset Collection. To collect the training dataset of detect-

ing CAPTCHA, we adopt XDriver [23] to crawl the web-

sites listed in the Alexa top 1-million websites. It automat-

ically locates the forms on the page, fills in all form inputs

with simulated data, and submits the form in order to trig-

ger CAPTCHAs. It then captures screenshots of these pages,

which we manually annotate to identify the bounding boxes

for any CAPTCHAs present. Due to ethical and security con-

siderations, we strictly limit our crawling to a single instance

per website, with a maximum depth of 2. Over two weeks, we

collected and labeled 1,764 webpage screenshots containing

CAPTCHAs. We employ data augmentation to enrich our

dataset with additional synthetic samples, bringing the total

to 10,680 webpage screenshots. Examples of the synthetic

samples generated are shown in Appendix A.1. We perform a

9:1 train-test split, where 9,612 samples are for training and

1,068 samples for testing.

Training Settings. We use the training framework provided

by the authors of [33], which is built upon OpenMMLab

Detection Toolbox [8]. The OLN object detection model uses

Faster-RCNN pre-trained on ImageNet as its backbone, with

the RPN and RoI head modified as described in Section 4.1.

We train the model for 8 epochs, with a batch size of 2 per

GPU, using Stochastic Gradient Descent with a learning rate

Table 3: Performance for CAPTCHA Recognition on Open-

set CAPTCHAs.

Class Precision Recall F1-Score

arkose_select 0.93 0.91 0.92

capycaptcha_drag 0.88 0.58 0.70

dicecaptcha_qa 0.97 0.68 0.80

funcaptcha_select_1 0.99 0.87 0.93

funcaptcha_select_2 0.98 0.48 0.64

funcaptcha_select_3 0.88 0.52 0.65

funcaptcha_select_4 0.62 0.91 0.74

funcaptcha_select_5 1.00 0.53 0.69

funcaptcha_select_6 0.88 0.72 0.79

keycaptcha_drag 0.93 0.75 0.83

mtcaptcha_text 0.46 0.63 0.53

Average 0.86 0.69 0.75

of 0.02 and momentum of 0.9.

Measurement. We use the mean average precision (mAP)

and mean average recall (mAR) to evaluate the performance,

which are the standard metrics for evaluating the completeness

and redundancy of the reported objects in object detection

tasks [33, 53]. The mAP and mAR are computed over IoU

thresholds ranging from 0.5 to 0.95.

Results. The OLN detector achieves a mean average precision

and recall of 0.92 and 0.97 respectively.

5.2.2 CAPTCHA Recognition

Dataset Collection. We have collected a total of 6,612

CAPTCHA samples spanning 38 classes, sourced from demo

websites (e.g., NetEase, Tencent, Arkose Labs), official API

keys provided by vendors (e.g., Google, hCaptcha, GeeTest),

and open-source community datasets. During training, we

employed a 9:1 train-test split, allocating 5,950 samples for

training and 662 samples for testing. This dataset serves as

the template database at deployment time.

Training Settings. As for the feature extractor, the visual

branch employs a ResNet-50 model pre-trained on ImageNet

with its classification head removed. This branch takes a re-

sized CAPTCHA region of dimensions 224×224 as input and

outputs the visual embedding. The textual branch is adapted

from EasyOCR [5]. It utilizes a Character-Region Aware-

ness for Text (CRAFT) model [18] pre-trained on SynthText

for bounding box detection and a Convolutional Long Short

Term Memory (CLSTM) [55] model pre-trained with the

STR framework [17] for textual embedding projection. Dur-

ing training, we freeze the textual branch and fine-tune all

other branches using Sub-center ArcFace [21] as described in

Section 4.2. We train the model for 100 epochs, with a batch

size of 2 per GPU, using Stochastic Gradient Descent with a

learning rate of 0.02 and a momentum of 0.9.



Measurement. We evaluate the training and testing accuracy

of our model in recognizing a particular CAPTCHA type. In

addition, we evaluate the generalizability of our model by

whether our model can recognize the new CAPTCHA types

without retraining the model. We argue that utilizing deep

Siamese learning for CAPTCHA recognition can improve

performance in open-set scenarios. To validate this, we first

collect an additional 11 CAPTCHA types not present in the

training datasets of our CAPTCHA detection and recognition

models. These newly acquired CAPTCHAs are superimposed

onto random webpage screenshots to create open-set test sam-

ples. We then update PhishDecloaker’s template database with

references from these new CAPTCHA classes and assess the

system’s ability to correctly classify these novel CAPTCHAs.

Results. Table 3 presents our results on the open-set dataset.

Our system yields satisfactory performance in correctly iden-

tifying unseen CAPTCHA types, with an average precision

of 86.0% and an average recall of 69%.

5.3 RQ3: CAPTCHA Solving

CAPTCHA Benchmark. Our CAPTCHA benchmarking

dataset includes reCAPTCHA v2, hCaptcha (V1&2), slider

CAPTCHA, and rotation CAPTCHA. For reCAPTCHA

v2, hCaptcha (V1&2), we test different difficulty levels:

easy, moderate, and difficult, which is categorized by the

CAPTCHA vendor. As for slider CAPTCHA, we include

three different versions from GeeTest, Tencent, and NetEase.

Lastly, we select Baidu’s rotation CAPTCHA for evaluation.

In general, we generate 200 CAPTCHA variants for each

version. In total, we evaluated 10 CAPTCHA versions in the

study.

Measurement. For reCAPTCHA v2, hCaptcha, all slider

CAPTCHA variations, and Baidu rotation CAPTCHA, we

determine their success rate by calculating the proportion of

successfully resolved CAPTCHA sessions compared to the

total number of requested CAPTCHA sessions. To elaborate,

during each CAPTCHA session, the solver may encounter

one or more consecutive CAPTCHA challenges. In order for

a CAPTCHA session to be considered as successfully solved,

the solver must successfully complete all presented challenges

and receive a confirmation of success (e.g., a green checkmark

in reCAPTCHA v2).

Additionally, to further analyze our rotation CAPTCHA

solver, we evaluate it on the test set in the Landscape Dataset.

The test samples are randomly rotated between 0 to 360

degrees. We use mean angular error (MAE) as the evalua-

tion metric. Given a batch of N predicted angles θi and their

ground truth (rotated) angles θ̂i, MAE is defined as follows:

MAE =
1

N

N

∑
i=1

(

180−
∣

∣|θi− θ̂i|−180
∣

∣

)

(2)

This metric quantifies the average angular discrepancy be-

tween the predicted and actual angles.

Table 4: CAPTCHA Metrics and Detection Rates

CAPTCHA Category Solving rate

reCAPTCHA v2

Easy 75.5%

Moderate 74.0%

Difficult 35.0%

hCaptcha

Easy 85.0%

Moderate 92.0%

Difficult 71.0%

Slider

GeeTest 95.0%

Tencent 89.0%

NetEase 100.0%

Rotation Baidu 74.5%
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Figure 6: Histogram of angular errors and their cumulative

distribution (red line) for the regression model on the test set

in Landscape Dataset.

Results. For reCAPTCHA and hCaptcha, we observe that

our solvers perform well on easy and moderate challenges.

Performance degrades for difficult cases, with reasons dis-

cussed in Section 5.1. Using the template matching algorithm,

the slider CAPTCHA solver performs uniformly well across

three different service providers, because that the algorithm is

robust against noise and distortion in the background images.

The rotation solver achieves a mean angular error of 15.62.

Figure 6 displays a histogram of the angular errors along with

its cumulative distribution. We observe that more than 90%

of the test samples exhibit an angular error of less than 35

degrees, and the histogram follows a long-tail distribution.

This indicates that the solver was able to reorient the majority

of images. We then conducted a test using Baidu’s rotation

CAPTCHA service, limiting the number of attempts to 200.

The solver achieves a solving rate of 74.5%.

5.4 RQ4: Ablation Study

We explore alternatives for PhishDecloaker’s architecture

design on recognizing a CAPTCHA type from a webpage

screenshot (i.e., a pipelined task of CAPTCHA detection and

recognition). We test the following alternatives:



Table 5: Results of our abalation study.

Configuration Result

Detector Recognizer Precision Recall

F-RCNN ResNet-50 0.89 0.84

F-RCNN Single-branch Siamese 0.92 0.84

F-RCNN Dual-branch Siamese 0.91 0.82

OLN ResNet-50 0.85 0.77

OLN Single-branch Siamese 0.92 0.86

OLN Dual-branch Siamese 0.93 0.86

• OP1 (alternative recognizer): How does a deep classifier

(implemented by ResNet-50) compare with Siamese metric

learning model in recognizing CAPTCHA types?

• OP2 (alternative object detector): How does Faster R-

CNN compare with OLN in detecting CAPTCHAs?

• OP3 (alternative branch design): How does a dual-branch

Siamese (i.e., visual & OCR-aided textual branch) compare

with a single-branch Siamese (i.e., visual branch)?

Dataset. To evaluate the precision and recall of CAPTCHA

recognition, we overlay the test samples from our CAPTCHA

recognition dataset (Section 5.2.2) onto 622 screenshots of

benign webpages and supplement them with 100 webpage

screenshots without CAPTCHAs.

Results. Table 5 shows our results. We observe that PhishDe-

cloaker’s design is the most optimal. Compared to Siamese

models, a classifier achieves less accuracy, especially in those

screenshots without CAPTCHAs. Compared to Faster R-

CNN, OLN manifests better recall. Finally, the dual-branch

Siamese design has a marginal improvement over single-

branch design by considering textual features (0.93 over 0.92

in precision). Security practitioners can make a trade-off be-

tween model complexity and performance.

5.5 RQ5: Robustness Against Adversaries

In this section, we assess PhishDecloaker’s robustness to eva-

sion attacks by generating custom CAPTCHA images that

target specific components of PhishDecloaker. We then evalu-

ate the system’s overall resilience.

5.5.1 Adversaries

We model our adversary as a phisher with no constraints

in time and computing resources to deploy evasion attacks.

The adversary’s aim is to create a CAPTCHA-cloaking page

that remains undetected by PhishDecloaker. To this end, we

conduct adversarial attacks on detection, recognition, and the

solving components, with the assumption that the adversary

possesses perfect knowledge of PhishDecloaker’s design.

Attacks on CAPTCHA Detection. We conduct DPatch at-

tack [38] to compromise the CAPTCHA detection component

of PhishDecloaker. DPatch generates adversarial patches that

can be applied to a webpage. In our case, the patches are

untargeted, To create untargeted patches, DPatch finds a patch

pattern P⃗u that maximize the loss of the object detector to the

true class label y⃗ and bounding box label B⃗ when the patch

is applied to a webpage screenshot x using “apply” function

A, as shown in Equation 3 [38]. The apply function A(x,P)
means adding patch P onto webpage screenshot x. As a result,

an object detection model can potentially fail to locate the

correct region containing CAPTCHAs.

P⃗u = argmax
P

Ex

[

L(A(x,P); y⃗, B⃗)
]

(3)

Attacks on CAPTCHA Recognition. We conduct adversar-

ial attacks on CAPTCHA images including Fast Gradient

Sign Method (FGSM) [28], Jacobian Saliency Map Attack

(JSMA) [51], Projected Gradient Descent (PGD) [40], and

DeepFool [44] to compromise the CAPTCHA recognition

component of PhishDecloaker. In the attack, we assume that

the attacker can access the white-box model but cannot poison

or modify PhishDecloaker deployed online,

Augmentation Attacks. Additionally, we conduct generic im-

age augmentation attacks on PhishDecloaker by performing 6

types of transformations on the CAPTCHA image and overlay

the transformed CAPTCHA onto random webpage screen-

shots. Specifically, they are Random Stretch, Gaussian Noise,

Random Crop, Random Mask, Salt & Pepper, and Gaussian

Blur. Appendix A.2 visualizes the attacks. Those augmenta-

tions are commonly found in phishing webpages [16]. Dif-

ferent from generating the adversarial images for CAPTCHA

detection and recognition component, those adversarial sam-

ples are visible.

Dataset. We apply all the above attacks on the dataset de-

scribed in Section 5.2.2.

Measurement. We measure the performance of PhishDe-

cloaker before and after attacks in terms of the accuracy of the

results of a pipelined CAPTCHA detection and CAPTCHA

recognition. We evaluate the robustness against the adver-

saries by the perturbation of overall CAPTCHA recognition

rate before and after the attack. We do not evaluate the solving

accuracy as we cannot change the online CAPTCHAs.

5.5.2 Results

Table 6 and Table 7 show that the accuracy loss under attacks.

We can see that our adopted gradient masking technique is

effective in defending the state-of-the-art gradient-based ad-

versarial attack on the deep learning models, i.e., CAPTCHA

detection and recognition models.

Furthermore, Table 8 shows the performance of PhishDe-

cloaker in recognizing augmented CAPTCHAs, including

attacks such as Random Stretch and Gaussian Noise, among



Table 6: The robustness of CAPTCHA recognition model

against diverse adversarial attack.

Attack Accuracy (no Def.) Accuracy (with Def.)

No Attack 0.97 1.00

JSMA 0.50 (-48.5%) 1.00 (-0.0%)

PGD 0.12 (-87.6%) 1.00 (-0.0%)

DeepFool 0.07 (-92.8%) 1.00 (-0.0%)

FGSM 0.06 (-93.8%) 1.00 (-0.0%)

Table 7: The robustness of CAPTCHA detection model

against adversarial attack.

Attack mAP (no Def.) mAP (with Def.)

No Attack 97.70 91.55

DPatch 54.65 (-44.1%) 85.71 (-6.4%)

others. We observe that transformation-based attacks can be

effectively countered through adversarial training. Although

the adversarial training process has only a subset of trans-

formations (i.e., Random Mask, Gaussian Noise and Blur),

the model performed well against other attacks, suggesting

that learned transformations can be generalized to effectively

handle unseen transformations.

Table 8: The robustness of PhishDecloaker against augmenta-

tion attacks.

Attack Accuracy (no Def.) Accuracy (with Def.)

No Attack 0.97 1.00

Random Stretch 0.95 (-1.9%) 0.96 (-4.0%)

Gaussian Noise 0.87 (-10.2%) 0.94 (-6.0%)

Random Crop 0.82 (-15.3%) 0.83 (-17.0%)

Random Mask 0.76 (-21.5%) 0.90 (-10.0%)

Salt and Pepper 0.33 (-66.4%) 0.92 (-8.0%)

Gaussian Blur 0.18 (-82.0%) 0.93 (-7.0%)

5.6 RQ6: Field Study

We further design a field study to evaluate the emergence of

CAPTCHA-cloaked phishing websites in the real world.

5.6.1 Experiment Setup

URL Source. We crawl fresh URLs from Certstream [3] in

real-time for 4 weeks, which provides domains with newly

issued TLS/SSL certificates.

Study Groups. We prepare 6 different study groups to ana-

lyze crawled sites for phishing, each using PhishIntention as

the base phishing detector for its state-of-the-art performance

in detecting zero-day phishing websites. Group 1 is a control

group with no JavaScript (JS) rendering or decloaking tech-

niques. Group 2 has only JS rendering. Groups 3 to 6 have

JS rendering and each is equipped with a type of decloaking

technique below:

• Anti-interaction-cloaking (AI): Automatically closes

alert, permission, and notification windows. It also ran-

domly moves and clicks the mouse after the page is loaded.

• Anti-fingerprint-cloaking (AF): Randomizes its user

agent and cookie storage, spoofs its referrer, and uses a

stealth headless browser.

• Anti-behavior-cloaking (AB): Automatically follows all

redirects and waits for 5 seconds if the page is blank (i.e.,

loading). It retries up to 3 times if the page fails to load.

• Anti-CAPTCHA-cloaking (AC): Uses PhishDecloaker to

automatically detect and solve CAPTCHAs.

Validation & Monitoring. We manually inspect and confirm

reported phishing websites. Further, we submit the confirmed

phishing websites to VT and track their lifespan. We consider

a manually confirmed phishing website as zero-day if it is

not reported by any of the detectors in VT. In addition, we

measure the time taken for sites to expire (time-to-takedown)

and blacklisted by VT (time-to-blacklist).

5.6.2 Results

In this field study, we captured totally 869 unique phish-

ing websites by all 6 study groups. Of these, 7.6% were

CAPTCHA-cloaked phishing websites, all of which were dis-

covered solely by PhishDecloaker. Table 9 further details

how each decloaking groups contribute to phishing discovery.

Group 3 (e.g., random mouse movement), Group 5 (e.g., repet-

itive visits), and Group 6 (with PhishDecloaker) report unique

phishing websites, i.e., the phishing websites reported only by

the specific group. We consider Group 3-5 as basic and tradi-

tional decloaking functions (e.g., randomly moving the mouse

and repetitive visits to a website), which still play an important

role in report zero-day phishing websites (i.e., Group 6 reports

203; Group 5 reports 198; and Group 3 reports 197). Nev-

ertheless, compared to those traditional decloaking groups,

CAPTCHA-based cloaking is emerging, which ranks the sec-

ond in terms of unique ratio and ranks the first in terms of

the number of discovered zero-day phishing websites, which

raises alarm to the phishing detection community. Further, the

result indicates a practical or commercial phishing decloaking

shall be hybrid to handle different cloaking techniques.

Next, we investigate the features of CAPTCHA-cloaked

phishing websites regarding the sectors of their target brands,

CAPTCHA types, lifespan, and time to be blacklisted.



Table 9: Field study results of each decloaking group on Cert-

stream URLs. PI: PhishIntention. JS: JavaScript rendering.

AI: anti-interaction-cloaking. AF: anti-fingerprint-cloaking.

AB: anti-behavior-cloaking. AC: anti-CAPTCHA-cloaking.

Group Setup Unique Ratio # 0-Days # Phishing

G1 PI 0.0% 101 (−0.0%) 361 (−0.0%)

G2 PI + JS 0.0% 176 (↑74.3%) 582 (↑61.2%)

G3 PI + JS + AI 14.1% 197 (↑95.0%) 710 (↑96.7%)

G4 PI + JS + AF 0.0% 165 (↑63.4%) 543 (↑50.4%)

G5 PI + JS + AB 7.4% 198 (↑96.0%) 692 (↑91.7%)

G6 PI + JS + AC 10.2% 203 (↑101.0%) 648 (↑79.5%)

Table 10: Top-5 targeted sectors by ordinary and CAPTCHA-

cloaked phishing sites.

Ordinary % CAPTCHA-Cloaked %

Telecommunications 23.8 Cryptocurrency 43.9

Social Networking 22.8 Social Networking 19.3

Gambling 12.5 Logistics / Courier 15.8

Online Services / Software 12.3 Government Services 8.8

Financial / Insurance 10.1 Financial / Insurance 5.3

Target Sectors. We further investigate the sectors of the tar-

get brands of traditional phishing websites and CAPTCHA-

cloaked phishing websites as showed in Table 10. We observe

that CAPTCHA-cloaked phishing websites are more likely to

target vibrant sectors like cryptocurrency (e.g., Coinbase and

Trust Wallet). In contrast, traditional phishing websites still

target sectors such as telecommunication (e.g., Orange and

AT&T).

CAPTCHA Types and Their Usage. As showed in Figure 7,

phishers tend to use f ree and convenient CAPTCHA ser-

vices. The distribution of CAPTCHA types used by benign

websites are: reCAPTCHA v2 (76.0%), hCaptcha (19.3%),

Text CAPTCHA (4.0%), Press & Hold (0.6%), Slider (0.1%),

whereas it is mainly hCaptcha (77.3%) and reCAPTCHA v2

(22.7%) on phishing sites. Interestingly, we find that fewer

than 20% of CAPTCHA API keys (i.e., the keys used to ac-

cess commercial CAPTCHA services) account for more than

55% of the discovered CAPTCHA-cloaked phishing sites.

One hCaptcha key was even found to be shared across 19

sites. It potentially indicates that CAPTCHA-cloaked phish-

ing attackers might also be sensitive to the “attacking cost”.

Life Span and Time to Blacklist. Different from our expecta-

tion, CAPTCHA-cloaked phishing websites have shorter lifes-

pan compared to ordinary phishing sites (9.7 vs. 13.2 hours),

as showed in Figure 8. However, it takes blacklist-based de-

tectors such as Google Safe Browser and SmartScreen more

time to put the URLs of CAPTCHA-cloaked phishing sites

in their blacklist, as showed in Figure 9. CAPTCHA-cloaked
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Figure 7: Distribution of CAPTCHA types on benign and

phishing sites.
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Figure 8: Cumulative distribution of life span for CAPTCHA-

cloaked and ordinary phishing sites.

phishing sites take a median time of 16 hours to be black-

listed, which is 45.5% longer than ordinary phishing sites (11

hours). The result indicates that CAPTCHA-cloaked phishing

websites are more active and evasive for traditional phishing

detectors.

Overhead. In this study, the median time of PhishDecloaker

on CAPTCHA detection and recognition are 0.4s and 0.3s re-

spectively, making Group 6 53.1% (0.68s) slower than Group

2. Although median time for CAPTCHA solving is 15.3s, it

can be decoupled and processed asynchronously.

6 Discussion

Limitations. Although PhishDecloaker can be extended to

include new CAPTCHA types for CAPTCHA detection

and recognition, it is limited by the number of supported

CAPTCHA solvers. When PhishDecloaker encounters a rare

CAPTCHA without a corresponding solver in its repository,

we offer two suggestions. First, PhishDecloaker can integrate

with existing CAPTCHA solving services (e.g., 2Captcha)

that rely on paid labour. These services provide a API end-

point for each different CAPTCHA type. In this case, PhishDe-

cloaker can identify the CAPTCHA type and call the right API

for the task. Second, PhishDecloaker can automatically notify

in-house human operators of unsolvable CAPTCHAs. Nev-

ertheless, in the era of Artificial General Intelligence (AGI),

we expect that emerging AI solutions can further empower

PhishDecloaker to achieve better performance.

Ethical Considerations. Our empirical study submits URLs

of self-hosted phishing kits to anti-phishing entities, which

may have a negative impact to the community. More specifi-

cally, security crawlers may spend unnecessary resources on
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Figure 9: Cumulative distribution of time taken to be black-

listed by SmartScreen or GSB for CAPTCHA-cloaked and

ordinary phishing sites.

analyzing simulated threats and innocent visitors may stumble

upon these sites. To mitigate this, we strictly follow the estab-

lished guidelines of previous works [13, 46, 47] by randomly

generating long URLs, submitting them only to anti-phishing

entities through proper channels, restricting the total number

of submissions to 500 per entity, and use defanged phishing

kits that do not store nor share credentials. Besides, PhishDe-

cloaker can be exploited to compromise benign websites. We

opt to keep it closed-source, sharing exclusively with trusted

researchers, security firms, and government agencies. We can

also deploy it as a restricted cloud service, where access key

is revoked if abused.

Future Work. Recently, vision-language foundation models

have demonstrated extraordinary emergent abilities on web

navigation tasks [22,25]. These models enable transformative

generalization and are capable of solving wide ranges of

interactive decision making problems in the wild [45]. Hence,

it is possible to study the feasibility of these models as zero-

shot or few-shot generalized CAPTCHA solvers.

7 Related Work

Phishing Detection. Conventional phishing detection sys-

tems such as SmartScreen, Google Safe Browsing, and Open-

Phish rely on blacklists, which are updated through user re-

ports, automatic crawling, and manual verification. However,

this method is limited by delays in list updates and frequently

misses short-lived phishing campaigns [49].

To automate verification, feature-engineering-based solu-

tions [20, 24, 27, 34, 39, 61, 63] use feature extraction and

classification techniques, focusing on HTML code, URLs, do-

mains, and screenshots. Despite their utility, these solutions

are inflexible and susceptible to code obfuscation, resulting

in rapid data obsolescence. To overcome these limitations,

reference-based solutions [12, 15, 35–37, 42] employ deep-

vision techniques to compare the representations of a phishing

page against a pre-defined reference list, determining its target

brand. These approaches are both extensible and explainable,

advancing the state-of-the-art in phishing detection.

Cloaking. Phishing websites use advanced cloaking tech-

niques to evade detection [14, 41, 48, 59, 64, 65]. Two main

types exist: server-side and client-side cloaking. Server-side

cloaking identifies users via HTTP requests, often using .htac-

cess or PHP scripts [19, 41, 46, 47, 49, 65]. It employs IP and

keyword blacklists, geolocation, and user-agents to filter traf-

fic. Countermeasures include multiple visits with spoofed IPs

and user-agents [13, 32, 35, 36, 64].

Client-side cloaking operates within browsers. It employs

browser fingerprinting and user interaction, such as pop-ups or

CAPTCHAs [13, 41, 59, 64]. It also manipulates bot behavior

to delay loading times [64]. Despite its rising popularity,

client-side cloaking challenges anti-phishing engines [41, 47].

Though lacking a systematic approach, some advances have

been made. For example, Crawlphish uses JavaScript force

execution to detect client-side cloaking but focuses more on

post-hoc analysis than real-time detection [64].

CAPTCHA Solving. Deep learning models have been used to

solve specific CAPTCHA types [26,31,57,66,67], but no sys-

tem exists for automatically identifying arbitrary CAPTCHAs,

consistent with [59]. Some ad hoc solvers include: Sivakorn

et al. [57] tackled Google reCAPTCHA v2 by exploiting

challenge instructions. They used image annotation services

and Word2Vec to match tags with challenge text. Hossen et

al. [31] employed a custom object detection model to recog-

nize the objects present in the challenge images. For slider

CAPTCHAs, Zhao et al. [67] developed an algorithm to match

background and target images to identify the puzzle region,

whereas Wu et al. [62] used object detection.

Unlike the above solutions, PhishDecloaker detects, recog-

nizes, and then solves various CAPTCHAs using an expand-

able repository of CAPTCHA solvers for anti-phishing.

8 Conclusion

We studied CAPTCHA cloaking, a prevalent technique

among phishing websites. Our empirical study showed

that none of the selected phishing detectors could detect

CAPTCHA-cloaked phishing. Motivated by this, we de-

veloped PhishDecloaker to automatically detect, recognize,

and solve CAPTCHAs. Our experiment confirmed PhishDe-

cloaker’s ability to restore phishing detection rates of Phish-

pedia and PhishIntention on CAPTCHA-cloaked phishing

kits, and it remained robust against adversarial attacks. We

further confirmed its practical impact through a field study

on Certstream URLs, revealing interesting behavior of 0-day

CAPTCHA-cloaked phishing sites in the wild.
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A Appendix

A.1 Summary of Datasets

CAPTCHA Detection Dataset (Usage: see 5.2.1). Contents:

19,680 webpage screenshots (1920×1080), 10,680 with an-

notated CAPTCHA bounding boxes, 9,000 without.

CAPTCHA Recognition Dataset (Usage: see 5.2.2). Con-

tents: 6,612 CAPTCHA images distributed across 38 classes.

CAPTCHA Open-set Dataset (Usage: see 5.2.2). Contents:

1,500 webpage screenshots (1920×1080), all of which have

annotated CAPTCHA classes spanning 15 different cate-

gories.

Ablation Dataset (Usage: see 5.4). Contents: 722 webpage

screenshots (1920×1080), 622 with CAPTCHAs spanning

38 classes, 100 without.

Landscape Dataset (Usage: see 4.3). Contents: 7,268 natural

and man-made landscape images (320×180).

(a) (b) (c)

Figure 10: Examples of CAPTCHA (a) detection (b) recognition

(c) open-set datasets.

A.2 Visualization of Augmentation Attacks

Figure 11 visualizes the augmentation attacks used in adver-

sarial study.

(a) Salt & Pepper (b) Gaussian Noise (c) Gaussian Blur

Figure 11: Examples of adversarial augmentations.

A.3 Other Human Verification Methods

This section offers a qualitative analysis of human verification

methods apart from CAPTCHA challenges to rate-limit or

block visitors.

TLS/SSL Fingerprinting Identify the visitor’s web client

using TLS and HTTP handshakes, and then present differ-

ent content for different clients. Countermeasure: handshake

impersonation [4].

GeoIP Filtering Restrict access based on visitor’s geograph-

ical location and IP addresse. Countermeasure: residential

proxies [43].

Behavior Analysis Analyze interactions of mouse cursors to

distinguish between human users and automated bots. Coun-

termeasure: generate human-like mouse trajectories.

Browser Fingerprinting Exploit JavaScript API to gather

data (e.g., screen size, screen orientation, display aspect ratio,

device hardware, fonts, plugins, extensions, user-agent) and

infer the visitor’s identity. Countermeasure: spoofing.
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